PCL-Python (50%)
1. Statistical Outlier Removal
def do_statistical_outlier_filtering(pcl_data,mean_k,tresh):
'''
:param pcl_data: point could data subscriber
:param mean_k: number of neighboring points to analyze for any given point
:param tresh: Any point with a mean distance larger than global will be considered outlier
:return: Statistical outlier filtered point cloud data
eg) cloud = do_statistical_outlier_filtering(cloud,10,0.001)
: https://github.com/fouliex/RoboticPerception
'''
outlier_filter = pcl_data.make_statistical_outlier_filter()
outlier_filter.set_mean_k(mean_k)
outlier_filter.set_std_dev_mul_thresh(tresh)
return outlier_filter.filter()
cloud = do_statistical_outlier_filtering(cloud,10,0.001)
# number of neighboring points of 10
# standard deviation threshold of 0.001
"""
์
๋ ฅ cloudํฌ๋งท : pcl_xyz
pcl_xyz = pcl_helper.XYZRGB_to_XYZ(pcl_xyzrgb)
pcl_xyz = do_statistical_outlier_filtering(pcl_xyz,10, 0.001)
pcl_xyzrgb = pcl_helper.XYZ_to_XYZRGB(pcl_xyz,[255,255,255])
pcl_xyzrgb์ : TypeError: __cinit__() takes exactly 1 positional argument (0 given) ์๋ฌ
"""Last updated
Was this helpful?