💻
Tutorial
  • INTRO
  • Part 0 (개요)
    • README
    • 3D 영상처리
    • [별첨] PCL & PCD란 (100%)
    • chapter02 : PCL 설치 (100%)
    • chapter03 : ROS 실습 준비(100%)
  • Part 1 (초급)
    • README
    • PCL 기반 로봇 비젼
    • [별첨] 파일 생성 및 입출력 (70%)
      • PCL-Cpp (70%)
      • PCL-Python (70%)
      • Open3D-Python (70%)
      • ROS 실습 (90%)
    • Filter
    • [별첨] 샘플링 (70%)
      • 다운샘플링-PCL-Cpp (70%)
      • 다운샘플링-PCL-Python (50%)
      • 업샘플링-PCL-Cpp (70%)
      • ROS 실습 (90%)
    • [별첨] 관심 영역 설정 (70%)
      • PCL-Cpp (70%)
      • PCL-Python (70%)
      • ROS 실습 (90%)
    • [별첨] 노이즈 제거 (70%)
      • PCL-Cpp (70%)
      • PCL-Python (50%)
      • ROS 실습 (90%)
  • Part 2 (중급)
    • README
    • Kd-Tree/Octree Search
    • Chapter03 : Sample Consensus
    • [별첨] 바닥제거 (RANSAC) (70%)
      • PCL-Cpp (70%)
      • PCL-Python (70%)
      • ROS 실습 (90%)
    • 군집화 (70%)
      • Euclidean-PCL-Cpp (70%)
      • Euclidean-PCL-Python (0%)
      • Conditional-Euclidean-PCL-Cpp (50%)
      • DBSCAN-PCL-Python (0%)
      • Region-Growing-PCL-Cpp (50%)
      • Region-Growing-RGB-PCL-Cpp (50%)
      • Min-Cut-PCL-Cpp (50%)
      • Model-Outlier-Removal-PCL-Cpp (50%)
      • Progressive-Morphological-Filter-PCL-Cpp (50%)
    • 포인트 탐색과 배경제거 (60%)
      • Search-Octree-PCL-Cpp (70%)
      • Search-Octree-PCL-Python (70%)
      • Search-Kdtree-PCL-Cpp (70%)
      • Search-Kdtree-PCL-Python (70%)
      • Compression-PCL-Cpp (70%)
      • DetectChanges-PCL-Cpp (50%)
      • DetectChanges-PCL-Python (50%)
    • 특징 찾기 (50%)
      • PFH-PCL-Cpp
      • FPFH-PCL-Cpp
      • Normal-PCL-Cpp (70%)
      • Normal-PCL-Python (80%)
      • Tmp
    • 분류/인식 (30%)
      • 인식-GeometricConsistencyGrouping
      • SVM-RGBD-PCL-Python (70%)
      • SVM-LIDAR-PCL-Python (0%)
      • SVM-ROS (0%)
    • 정합 (70%)
      • ICP-PCL-Cpp (70%)
      • ICP-ROS 실습 (10%)
    • 재구성 (30%)
      • Smoothig-PCL-Cpp (70%)
      • Smoothig-PCL-Python (70%)
      • Triangulation-PCL-Cpp (70%)
  • Part 3 (고급)
    • README
    • 딥러닝 기반 학습 데이터 생성 (0%)
      • PointGAN (90%)
      • AutoEncoder (0%)
    • 딥러닝 기반 샘플링 기법 (0%)
      • DenseLidarNet (50%)
      • Point Cloud Upsampling Network
      • Pseudo-LiDAR
    • 딥러닝 기반 자율주행 탐지 기술 (0%)
    • 딥러닝 기반 자율주행 분류 기술 (0%)
      • Multi3D
      • PointNet
      • VoxelNet (50%)
      • YOLO3D
      • SqueezeSeg
      • butNet
  • Snippets
    • PCL-Snippets
    • PCL-Python-Helper (10%)
    • Lidar Data Augmentation
  • Appendix
    • 시각화Code
    • 시각화툴
    • Annotation툴
    • Point Cloud Libraries (0%)
    • 데이터셋
    • Cling_PCL
    • 참고 자료
    • 작성 계획_Tips
    • 용어집
Powered by GitBook
On this page
  • 1. 개요
  • 2. 설치 (Docker 기반)
  • 데이터 준비
  • 도커 pull & 실행
  • 3. 실행
  • 설정 수정(In the docker )
  • train
  • Evaluate
  • 결과 확인

Was this helpful?

  1. Part 3 (고급)
  2. 딥러닝 기반 자율주행 분류 기술 (0%)

VoxelNet (50%)

PreviousPointNetNextYOLO3D

Last updated 5 years ago

Was this helpful?

1. 개요

2. 설치 (Docker 기반)

데이터 준비

└── DATA_DIR
       ├── training   <-- training data
       |   ├── image_2
       |   ├── label_2
       |   └── velodyne
       └── validation  <--- evaluation data
       |   ├── image_2
       |   ├── label_2
       |   └── velodyne

도커 pull & 실행

$ docker pull adioshun/voxelnet
$ docker run --runtime=nvidia -it --privileged --network=host -v /tmp/.X11-unix:/tmp/.X11-unix --volume="$HOME/.Xauthority:/root/.Xauthority:rw" -e DISPLAY -v /media/{DATA_DIR}/datasets:/dataset --name 'voxelnet' adioshun/voxelnet /bin/bash

3. 실행

설정 수정(In the docker )

  • config.py

# for dataset dir
__C.DATA_DIR = '/voxelnet/data/dataset'
__C.CALIB_DIR = '/voxelnet/data/dataset/training/calib'


# for gpu allocation
__C.GPU_AVAILABLE = '0,1'
__C.GPU_USE_COUNT = len(__C.GPU_AVAILABLE.split(','))
__C.GPU_MEMORY_FRACTION = 1
  • kitti_eval/launch_test.sh

train

python3 train.py --vis true
  • log 저장 위치 : log/default #Tensorboard 지원

  • validation results : predictions/{epoch number}/data

  • validation results(이미지) : predictions/{epoch number}/vis # --vis true 사용시 (기본 false)

  • model 저장 위치 : save_model/default

  • 학습된 model 저장 위치 :save_model/pre_trained_car

Nvidia 1080 Ti GPUs로 약 3일이 소요 되므로 학습된 모델 사용을 권장 합니다.

학습 완료 후 Learning Curve 확인

python3 parse_log.py predictions
# predictions.jpg 생성

Evaluate

$ python3 test.py -n default --vis True#학습된 결과물 활용 
$ python3 test.py -n pre_trained_car --vis True#사전 학습된 결과물 활용 `save_model/pre_trained_car`
  • 결과 저장 폴더 : predictions/data

  • 결과 저장 폴더(이미지) : predictions/vis# --vis true 사용시 (기본 false)

결과 확인

./kitti_eval/evaluate_object_3d_offline ./../data/dataset/validation/label_2/ ./prediction

https://adioshun.gitbooks.io/paper-3d-object-detection-and-tracking/content/2017-voxelnet-end-to-end-learning-for-point-cloud-based-3d-object-detection.html
an unofficial inplementation of VoxelNet in TensorFlow