VoxelNet (50%)

1. ๊ฐœ์š”

https://adioshun.gitbooks.io/paper-3d-object-detection-and-tracking/content/2017-voxelnet-end-to-end-learning-for-point-cloud-based-3d-object-detection.html

2. ์„ค์น˜ (Docker ๊ธฐ๋ฐ˜)

๋ฐ์ดํ„ฐ ์ค€๋น„

โ””โ”€โ”€ DATA_DIR
       โ”œโ”€โ”€ training   <-- training data
       |   โ”œโ”€โ”€ image_2
       |   โ”œโ”€โ”€ label_2
       |   โ””โ”€โ”€ velodyne
       โ””โ”€โ”€ validation  <--- evaluation data
       |   โ”œโ”€โ”€ image_2
       |   โ”œโ”€โ”€ label_2
       |   โ””โ”€โ”€ velodyne

๋„์ปค pull & ์‹คํ–‰

$ docker pull adioshun/voxelnet
$ docker run --runtime=nvidia -it --privileged --network=host -v /tmp/.X11-unix:/tmp/.X11-unix --volume="$HOME/.Xauthority:/root/.Xauthority:rw" -e DISPLAY -v /media/{DATA_DIR}/datasets:/dataset --name 'voxelnet' adioshun/voxelnet /bin/bash

3. ์‹คํ–‰

์„ค์ • ์ˆ˜์ •(In the docker )

  • config.py

  • kitti_eval/launch_test.sh

train

  • log ์ €์žฅ ์œ„์น˜ : log/default #Tensorboard ์ง€์›

  • validation results : predictions/{epoch number}/data

  • validation results(์ด๋ฏธ์ง€) : predictions/{epoch number}/vis # --vis true ์‚ฌ์šฉ์‹œ (๊ธฐ๋ณธ false)

  • model ์ €์žฅ ์œ„์น˜ : save_model/default

  • ํ•™์Šต๋œ model ์ €์žฅ ์œ„์น˜ :save_model/pre_trained_car

Nvidia 1080 Ti GPUs๋กœ ์•ฝ 3์ผ์ด ์†Œ์š” ๋˜๋ฏ€๋กœ ํ•™์Šต๋œ ๋ชจ๋ธ ์‚ฌ์šฉ์„ ๊ถŒ์žฅ ํ•ฉ๋‹ˆ๋‹ค.

ํ•™์Šต ์™„๋ฃŒ ํ›„ Learning Curve ํ™•์ธ

Evaluate

  • ๊ฒฐ๊ณผ ์ €์žฅ ํด๋” : predictions/data

  • ๊ฒฐ๊ณผ ์ €์žฅ ํด๋”(์ด๋ฏธ์ง€) : predictions/vis# --vis true ์‚ฌ์šฉ์‹œ (๊ธฐ๋ณธ false)

๊ฒฐ๊ณผ ํ™•์ธ

Last updated

Was this helpful?