Smoothig-PCL-Python (70%)
C++ ์ฝ๋๋ [์ด๊ณณ]์์ ๋ค์ด๋ก๋ ๊ฐ๋ฅํฉ๋๋ค. ์๋ณธ ์ฝ๋๋ [์ด๊ณณ]์ ์ฐธ๊ณ ํ์์ต๋๋ค. ์ํํ์ผ์ [bunny.pcd]์ ์ฌ์ฉํ์์ต๋๋ค. Jupyter ๋ฒ์ ผ์ [์ด๊ณณ]์์ ํ์ธ ๊ฐ๋ฅ ํฉ๋๋ค.
!python --version
!pip freeze | grep pcl
Python 2.7.15rc1
python-pcl==0.3
import numpy as np
import pcl
import random
cloud = pcl.load('bunny.pcd')
print('cloud(size) = ' + str(cloud.size))
# Create a KD-Tree
tree = cloud.make_kdtree()
# Output has the PointNormal type in order to store the normals calculated by MLS
mls = cloud.make_moving_least_squares()
mls.set_Compute_Normals (True)
mls.set_polynomial_fit (True)
mls.set_Search_Method (tree)
mls.set_search_radius (0.03) # Use all neighbors in a radius of 3cm.
# // Reconstruct
mls_points = mls.process ()
print('cloud(size) = ' + str(mls_points.size))
pcl.save_PointNormal(mls_points, 'bunny-mls.pcd')
cloud(size) = 397
cloud(size) = 397
๋ ธ์ด์ฆ ์ ๊ฑฐํ Upsampling์ ์ํ ํ๋ฏ๋ก, ์ ๊ฑฐ๋ ๋ ธ์ด์ฆ๊ฐ ๋ง์๊ฒฝ์ฐ ํฌ์ธํธ ์๋ ์คํ๋ ค ๊ฐ์ ํ ์ ์์ต๋๋ค.
Last updated
Was this helpful?