Smoothig-PCL-Python (70%)
C++ μ½λλ [μ΄κ³³]μμ λ€μ΄λ‘λ κ°λ₯ν©λλ€. μλ³Έ μ½λλ [μ΄κ³³]μ μ°Έκ³ νμμ΅λλ€. μννμΌμ [bunny.pcd]μ μ¬μ©νμμ΅λλ€. Jupyter λ²μ Όμ [μ΄κ³³]μμ νμΈ κ°λ₯ ν©λλ€.
!python --version
!pip freeze | grep pcl
Python 2.7.15rc1
python-pcl==0.3
import numpy as np
import pcl
import random
cloud = pcl.load('bunny.pcd')
print('cloud(size) = ' + str(cloud.size))
# Create a KD-Tree
tree = cloud.make_kdtree()
# Output has the PointNormal type in order to store the normals calculated by MLS
mls = cloud.make_moving_least_squares()
mls.set_Compute_Normals (True)
mls.set_polynomial_fit (True)
mls.set_Search_Method (tree)
mls.set_search_radius (0.03) # Use all neighbors in a radius of 3cm.
# // Reconstruct
mls_points = mls.process ()
print('cloud(size) = ' + str(mls_points.size))
pcl.save_PointNormal(mls_points, 'bunny-mls.pcd')
cloud(size) = 397
cloud(size) = 397
λ Έμ΄μ¦ μ κ±°ν Upsamplingμ μν νλ―λ‘, μ κ±°λ λ Έμ΄μ¦κ° λ§μκ²½μ° ν¬μΈνΈ μλ μ€νλ € κ°μ ν μ μμ΅λλ€.
Last updated
Was this helpful?