Conditional-Euclidean-PCL-Cpp (50%)
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/time.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/segmentation/conditional_euclidean_clustering.h>
//Conditional Euclidean Clustering
//http://pointclouds.org/documentation/tutorials/conditional_euclidean_clustering.php#conditional-euclidean-clustering
bool
customRegionGrowing (const pcl::PointXYZINormal& point_a, const pcl::PointXYZINormal& point_b, float squared_distance)
{
Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.getNormalVector3fMap (), point_b_normal = point_b.getNormalVector3fMap ();
if (squared_distance < 10000)
{
if (std::abs (point_a.intensity - point_b.intensity) < 8.0f)
return (true);
if (std::abs (point_a_normal.dot (point_b_normal)) < 0.06)
return (true);
}
else
{
if (std::abs (point_a.intensity - point_b.intensity) < 3.0f)
return (true);
}
return (false);
}
int
main (int argc, char** argv)
{
// *.PCD 파일 읽기
// https://excellmedia.dl.sourceforge.net/project/pointclouds/PCD%20datasets/Trimble/Outdoor1/Statues_4.pcd.zip
pcl::PointCloud<pcl::PointXYZI>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZI>);
pcl::io::loadPCDFile <pcl::PointXYZI> ("Statues_4.pcd", *cloud_in);
// 포인트수 출력
std::cout << "Loaded :" << cloud_in->points.size () << std::endl;
// 다운 샘플링
pcl::PointCloud<pcl::PointXYZI>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZI>);
pcl::VoxelGrid<pcl::PointXYZI> vg;
vg.setInputCloud (cloud_in);
vg.setLeafSize (80.0, 80.0, 80.0);
vg.setDownsampleAllData (true);
vg.filter (*cloud_out);
// Normal 계산후 합치기 (Set up a Normal Estimation class and merge data in cloud_with_normals)
pcl::PointCloud<pcl::PointXYZINormal>::Ptr cloud_with_normals (new pcl::PointCloud<pcl::PointXYZINormal>);
pcl::search::KdTree<pcl::PointXYZI>::Ptr search_tree (new pcl::search::KdTree<pcl::PointXYZI>);
pcl::copyPointCloud (*cloud_out, *cloud_with_normals);
pcl::NormalEstimation<pcl::PointXYZI, pcl::PointXYZINormal> ne;
ne.setInputCloud (cloud_out);
ne.setSearchMethod (search_tree);
ne.setRadiusSearch (300.0);
ne.compute (*cloud_with_normals);
// Set up a Conditional Euclidean Clustering class
pcl::IndicesClustersPtr clusters (new pcl::IndicesClusters);
pcl::ConditionalEuclideanClustering<pcl::PointXYZINormal> cec(true); //True = 작거나(setMinClusterSize) 큰것도(setMaxClusterSize) 수행
cec.setInputCloud (cloud_with_normals); // 입력
cec.setConditionFunction (&customRegionGrowing); // 사용자 정의 조건
cec.setClusterTolerance (500.0); //K-NN 탐색시 Radius값 (후보 포인트 탐색에 사용)
cec.setMinClusterSize (cloud_with_normals->points.size () / 1000); //클러스터 최소 포인트 수 (eg. 전체 포인트 수의 0.1% 이하 )
cec.setMaxClusterSize (cloud_with_normals->points.size () / 5); //클러스터 최대 포인트 수 (eg. 전체 포인트 수의 20% 이상 )
cec.segment (*clusters); //군집화 실행
// True로 초기화시 작거나 큰것의 정보를 저장할 곳
pcl::IndicesClustersPtr small_clusters (new pcl::IndicesClusters);
pcl::IndicesClustersPtr large_clusters (new pcl::IndicesClusters);
cec.getRemovedClusters (small_clusters, large_clusters);
// Using the intensity channel for lazy visualization of the output
for (int i = 0; i < small_clusters->size (); ++i)
for (int j = 0; j < (*small_clusters)[i].indices.size (); ++j)
cloud_out->points[(*small_clusters)[i].indices[j]].intensity = -2.0;
for (int i = 0; i < large_clusters->size (); ++i)
for (int j = 0; j < (*large_clusters)[i].indices.size (); ++j)
cloud_out->points[(*large_clusters)[i].indices[j]].intensity = +10.0;
for (int i = 0; i < clusters->size (); ++i)
{
int label = rand () % 8;
for (int j = 0; j < (*clusters)[i].indices.size (); ++j)
cloud_out->points[(*clusters)[i].indices[j]].intensity = label;
}
// Save the output point cloud
pcl::io::savePCDFile ("output.pcd", *cloud_out);
return (0);
}
/*
bool
enforceIntensitySimilarity (const pcl::PointXYZINormal& point_a, const pcl::PointXYZINormal& point_b, float squared_distance)
{
if (std::abs (point_a.intensity - point_b.intensity) < 5.0f)
return (true);
else
return (false);
}
bool
enforceCurvatureOrIntensitySimilarity (const pcl::PointXYZINormal& point_a, const pcl::PointXYZINormal& point_b, float squared_distance)
{
Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.getNormalVector3fMap (), point_b_normal = point_b.getNormalVector3fMap ();
if (std::abs (point_a.intensity - point_b.intensity) < 5.0f)
return (true);
if (std::abs (point_a_normal.dot (point_b_normal)) < 0.05)
return (true);
return (false);
}
*/
Last updated