๐Ÿ’ป
Tutorial
  • INTRO
  • Part 0 (๊ฐœ์š”)
    • README
    • 3D ์˜์ƒ์ฒ˜๋ฆฌ
    • [๋ณ„์ฒจ] PCL & PCD๋ž€ (100%)
    • chapter02 : PCL ์„ค์น˜ (100%)
    • chapter03 : ROS ์‹ค์Šต ์ค€๋น„(100%)
  • Part 1 (์ดˆ๊ธ‰)
    • README
    • PCL ๊ธฐ๋ฐ˜ ๋กœ๋ด‡ ๋น„์ ผ
    • [๋ณ„์ฒจ] ํŒŒ์ผ ์ƒ์„ฑ ๋ฐ ์ž…์ถœ๋ ฅ (70%)
      • PCL-Cpp (70%)
      • PCL-Python (70%)
      • Open3D-Python (70%)
      • ROS ์‹ค์Šต (90%)
    • Filter
    • [๋ณ„์ฒจ] ์ƒ˜ํ”Œ๋ง (70%)
      • ๋‹ค์šด์ƒ˜ํ”Œ๋ง-PCL-Cpp (70%)
      • ๋‹ค์šด์ƒ˜ํ”Œ๋ง-PCL-Python (50%)
      • ์—…์ƒ˜ํ”Œ๋ง-PCL-Cpp (70%)
      • ROS ์‹ค์Šต (90%)
    • [๋ณ„์ฒจ] ๊ด€์‹ฌ ์˜์—ญ ์„ค์ • (70%)
      • PCL-Cpp (70%)
      • PCL-Python (70%)
      • ROS ์‹ค์Šต (90%)
    • [๋ณ„์ฒจ] ๋…ธ์ด์ฆˆ ์ œ๊ฑฐ (70%)
      • PCL-Cpp (70%)
      • PCL-Python (50%)
      • ROS ์‹ค์Šต (90%)
  • Part 2 (์ค‘๊ธ‰)
    • README
    • Kd-Tree/Octree Search
    • Chapter03 : Sample Consensus
    • [๋ณ„์ฒจ] ๋ฐ”๋‹ฅ์ œ๊ฑฐ (RANSAC) (70%)
      • PCL-Cpp (70%)
      • PCL-Python (70%)
      • ROS ์‹ค์Šต (90%)
    • ๊ตฐ์ง‘ํ™” (70%)
      • Euclidean-PCL-Cpp (70%)
      • Euclidean-PCL-Python (0%)
      • Conditional-Euclidean-PCL-Cpp (50%)
      • DBSCAN-PCL-Python (0%)
      • Region-Growing-PCL-Cpp (50%)
      • Region-Growing-RGB-PCL-Cpp (50%)
      • Min-Cut-PCL-Cpp (50%)
      • Model-Outlier-Removal-PCL-Cpp (50%)
      • Progressive-Morphological-Filter-PCL-Cpp (50%)
    • ํฌ์ธํŠธ ํƒ์ƒ‰๊ณผ ๋ฐฐ๊ฒฝ์ œ๊ฑฐ (60%)
      • Search-Octree-PCL-Cpp (70%)
      • Search-Octree-PCL-Python (70%)
      • Search-Kdtree-PCL-Cpp (70%)
      • Search-Kdtree-PCL-Python (70%)
      • Compression-PCL-Cpp (70%)
      • DetectChanges-PCL-Cpp (50%)
      • DetectChanges-PCL-Python (50%)
    • ํŠน์ง• ์ฐพ๊ธฐ (50%)
      • PFH-PCL-Cpp
      • FPFH-PCL-Cpp
      • Normal-PCL-Cpp (70%)
      • Normal-PCL-Python (80%)
      • Tmp
    • ๋ถ„๋ฅ˜/์ธ์‹ (30%)
      • ์ธ์‹-GeometricConsistencyGrouping
      • SVM-RGBD-PCL-Python (70%)
      • SVM-LIDAR-PCL-Python (0%)
      • SVM-ROS (0%)
    • ์ •ํ•ฉ (70%)
      • ICP-PCL-Cpp (70%)
      • ICP-ROS ์‹ค์Šต (10%)
    • ์žฌ๊ตฌ์„ฑ (30%)
      • Smoothig-PCL-Cpp (70%)
      • Smoothig-PCL-Python (70%)
      • Triangulation-PCL-Cpp (70%)
  • Part 3 (๊ณ ๊ธ‰)
    • README
    • ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ•™์Šต ๋ฐ์ดํ„ฐ ์ƒ์„ฑ (0%)
      • PointGAN (90%)
      • AutoEncoder (0%)
    • ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ƒ˜ํ”Œ๋ง ๊ธฐ๋ฒ• (0%)
      • DenseLidarNet (50%)
      • Point Cloud Upsampling Network
      • Pseudo-LiDAR
    • ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ž์œจ์ฃผํ–‰ ํƒ์ง€ ๊ธฐ์ˆ  (0%)
    • ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ž์œจ์ฃผํ–‰ ๋ถ„๋ฅ˜ ๊ธฐ์ˆ  (0%)
      • Multi3D
      • PointNet
      • VoxelNet (50%)
      • YOLO3D
      • SqueezeSeg
      • butNet
  • Snippets
    • PCL-Snippets
    • PCL-Python-Helper (10%)
    • Lidar Data Augmentation
  • Appendix
    • ์‹œ๊ฐํ™”Code
    • ์‹œ๊ฐํ™”ํˆด
    • Annotationํˆด
    • Point Cloud Libraries (0%)
    • ๋ฐ์ดํ„ฐ์…‹
    • Cling_PCL
    • ์ฐธ๊ณ  ์ž๋ฃŒ
    • ์ž‘์„ฑ ๊ณ„ํš_Tips
    • ์šฉ์–ด์ง‘
Powered by GitBook
On this page

Was this helpful?

  1. Part 2 (์ค‘๊ธ‰)
  2. [๋ณ„์ฒจ] ๋ฐ”๋‹ฅ์ œ๊ฑฐ (RANSAC) (70%)

PCL-Cpp (70%)

Previous[๋ณ„์ฒจ] ๋ฐ”๋‹ฅ์ œ๊ฑฐ (RANSAC) (70%)NextPCL-Python (70%)

Last updated 5 years ago

Was this helpful?

์ฝ”๋“œ๋Š” ์—์„œ ๋‹ค์šด๋กœ๋“œ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ์ƒ˜ํ”ŒํŒŒ์ผ์€ ์„ ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์›๋ณธ ์ฝ”๋“œ๋Š” ์„ ์ฐธ๊ณ  ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/extract_indices.h>

//Plane model segmentation
//http://pointclouds.org/documentation/tutorials/planar_segmentation.php#planar-segmentation

int
main (int argc, char** argv)
{

  pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGB>), 
                                        cloud_p (new pcl::PointCloud<pcl::PointXYZRGB>), 
                                        inlierPoints (new pcl::PointCloud<pcl::PointXYZRGB>),
                                        inlierPoints_neg (new pcl::PointCloud<pcl::PointXYZRGB>);

  // *.PCD ํŒŒ์ผ ์ฝ๊ธฐ (https://raw.githubusercontent.com/adioshun/gitBook_Tutorial_PCL/master/Beginner/sample/tabletop_passthrough.pcd)
  pcl::io::loadPCDFile<pcl::PointXYZRGB> ("tabletop_passthrough.pcd", *cloud);

  // ํฌ์ธํŠธ์ˆ˜ ์ถœ๋ ฅ
  std::cout << "Loaded :" << cloud->width * cloud->height  << std::endl;

  // Object for storing the plane model coefficients.
  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());


  // ์˜คํ”„์ ํŠธ ์ƒ์„ฑ Create the segmentation object.
  pcl::SACSegmentation<pcl::PointXYZRGB> seg;
  seg.setOptimizeCoefficients (true);       //(์˜ต์…˜) // Enable model coefficient refinement (optional).
  seg.setInputCloud (cloud);                 //์ž…๋ ฅ 
  seg.setModelType (pcl::SACMODEL_PLANE);    //์ ์šฉ ๋ชจ๋ธ  // Configure the object to look for a plane.
  seg.setMethodType (pcl::SAC_RANSAC);       //์ ์šฉ ๋ฐฉ๋ฒ•   // Use RANSAC method.
  seg.setMaxIterations (1000);               //์ตœ๋Œ€ ์‹คํ–‰ ์ˆ˜
  seg.setDistanceThreshold (0.01);          //inlier๋กœ ์ฒ˜๋ฆฌํ•  ๊ฑฐ๋ฆฌ ์ •๋ณด   // Set the maximum allowed distance to the model.
  //seg.setRadiusLimits(0, 0.1);     // cylinder๊ฒฝ์šฐ, Set minimum and maximum radii of the cylinder.
  seg.segment (*inliers, *coefficients);    //์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ์ ์šฉ 


  //์ถ”์ •๋œ ํ‰๋ฉด ํŒŒ๋ผ๋ฏธํ„ฐ ์ถœ๋ ฅ (eg. ax + by + cz + d = 0 ).
  std::cerr << "Model coefficients: " << coefficients->values[0] << " " 
                                      << coefficients->values[1] << " "
                                      << coefficients->values[2] << " " 
                                      << coefficients->values[3] << std::endl;

  pcl::copyPointCloud<pcl::PointXYZRGB>(*cloud, *inliers, *inlierPoints);
  pcl::io::savePCDFile<pcl::PointXYZRGB>("SACSegmentation_result.pcd", *inlierPoints);


 //[์˜ต์…˜]] ๋ฐ”๋‹ฅ ์ œ๊ฑฐ ๊ฒฐ๊ณผ ์–ป๊ธฐ 
 //Extracting indices from a PointCloud
 //http://pointclouds.org/documentation/tutorials/extract_indices.php
 pcl::ExtractIndices<pcl::PointXYZRGB> extract;
 extract.setInputCloud (cloud);
 extract.setIndices (inliers);
 extract.setNegative (true);//false
 extract.filter (*inlierPoints_neg);
 pcl::io::savePCDFile<pcl::PointXYZRGB>("SACSegmentation_result_neg.pcd", *inlierPoints_neg);

  return (0);


}

์‹คํ–‰ ๊ฒฐ๊ณผ

Loaded :72823
Model coefficients: 3.88368e-05 0.000606678 1 -0.773654

์‹œ๊ฐํ™” & ๊ฒฐ๊ณผ

$ pcl_viewer tabletop_passthrough.pcd 
$ pcl_viewer SACSegmentation_result.pcd  
$ pcl_viewer SACSegmentation_result_neg.pcd

์›๋ณธtabletop_passthrough.pcd

๊ฒฐ๊ณผsetNegative (false)

๊ฒฐ๊ณผ setNegative (true)

[์ด๊ณณ]
[tabletop_passthrough.pcd]
[์ด๊ณณ]