Normal-PCL-Cpp (70%)
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d.h>
#include <boost/thread/thread.hpp>
#include <pcl/visualization/pcl_visualizer.h>
int
main(int argc, char** argv)
{
// Object for storing the point cloud.
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
// Object for storing the normals.
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
// Read a PCD file from disk.
pcl::io::loadPCDFile<pcl::PointXYZ>("lobby.pcd", *cloud);
// Object for normal estimation.
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normalEstimation;
normalEstimation.setInputCloud(cloud);
// For every point, use all neighbors in a radius of 3cm.
normalEstimation.setRadiusSearch(0.03);
// A kd-tree is a data structure that makes searches efficient. More about it later.
// The normal estimation object will use it to find nearest neighbors.
pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree(new pcl::search::KdTree<pcl::PointXYZ>);
normalEstimation.setSearchMethod(kdtree);
// Calculate the normals.
normalEstimation.compute(*normals);
// Visualize them.
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Normals"));
viewer->addPointCloud<pcl::PointXYZ>(cloud, "cloud");
// Display one normal out of 20, as a line of length 3cm.
viewer->addPointCloudNormals<pcl::PointXYZ, pcl::Normal>(cloud, normals, 20, 0.03, "normals");
while (!viewer->wasStopped())
{
viewer->spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
}
normals are stored in "PointCloud" objects
setRadiusSearch()
: setKSearch(int K)
: point's K nearest neighbors to compute the normal
์ถํ Normal ์์ํ ๋ฐฉ๋ฒ ์ถ๊ฐ
Normal ์์ฑ + ๋ณํฉ + ์ ์ฅ
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d.h>
#include <pcl/visualization/pcl_visualizer.h>
// How 3D Features work in PCL
// http://pointclouds.org/documentation/tutorials/how_features_work.php
int
main (int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>); // ์
๋ ฅ ํฌ์ธํธ ํด๋ผ์ฐ๋ ์ ์ฅํ ์ค๋ธ์ ํธ
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>); // ๊ณ์ฐ๋ Normal์ ์ ์ฅํ ์ค๋ธ์ ํธ
pcl::PointCloud<pcl::PointNormal> p_n_cloud_c;
// *.PCD ํ์ผ ์ฝ๊ธฐ (https://raw.githubusercontent.com/adioshun/gitBook_Tutorial_PCL/master/Beginner/sample/tabletop.pcd)
pcl::io::loadPCDFile<pcl::PointXYZ> ("tabletop.pcd", *cloud);
std::cout << "INPUT " << cloud->points.size () << std::endl;
// Create the normal estimation class, and pass the input dataset to it
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
ne.setInputCloud (cloud);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
ne.setSearchMethod (tree);
ne.setRadiusSearch (0.03); // Use all neighbors in a sphere of radius 3cm
// setKSearch() ๋ณ๊ฒฝ ๊ฐ๋ฅ
ne.compute (*cloud_normals); // Compute the features
// ํฌ์ธํธ์ ์ถ๋ ฅ
std::cout << "NORMAL " << cloud_normals->points.size () << std::endl;
// Copy the point cloud data
pcl::concatenateFields (*cloud, *cloud_normals, p_n_cloud_c);
pcl::io::savePCDFile<pcl::PointNormal>("p_n_cloud_c.pcd", p_n_cloud_c);
std::cerr << "Cloud C: " << std::endl;
for (std::size_t i = 0; i < 5; ++i)
std::cerr << " " <<
p_n_cloud_c[i].x << " " << p_n_cloud_c[i].y << " " << p_n_cloud_c[i].z << " " <<
p_n_cloud_c[i].normal[0] << " " << p_n_cloud_c[i].normal[1] << " " << p_n_cloud_c[i].normal[2] << std::endl;
// Visualize them.
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Normals"));
viewer->addPointCloud<pcl::PointXYZ>(cloud, "cloud");
// Display one normal out of 20, as a line of length 3cm.
viewer->addPointCloudNormals<pcl::PointXYZ, pcl::Normal>(cloud, cloud_normals, 20, 0.03, "normals");
while (!viewer->wasStopped())
{
viewer->spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
}
Last updated