SVM-RGBD-PCL-Python (70%)
PCL-Python을 이용한 분류
Jupyter 버젼은 [이곳], [이곳-Pileline]에서 확인 가능 합니다.
예측에 사용된 pcd샘플은 [이곳]의
table_scene_inliers_0.pcd~table_scene_inliers_6.pcd를 사용 하였습니다.
#!/usr/bin/env python
import pickle
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.preprocessing import LabelEncoder, StandardScalerimport matplotlib.colors
def rgb_to_hsv(rgb_list):
rgb_normalized = [1.0*rgb_list[0]/255, 1.0*rgb_list[1]/255, 1.0*rgb_list[2]/255]
hsv_normalized = matplotlib.colors.rgb_to_hsv([[rgb_normalized]])[0][0]
return hsv_normalized
def compute_color_histograms_PCD(cloud, using_hsv=False):
# Compute histograms for the clusters
point_colors_list = []
"""
# Step through each point in the point cloud for ROS msg
for point in pc2.read_points(cloud, skip_nans=True):
rgb_list = float_to_rgb(point[3])
if using_hsv:
point_colors_list.append(rgb_to_hsv(rgb_list) * 255)
else:
point_colors_list.append(rgb_list)
"""
# Step through each point in the point cloud for PCD
for point in cloud[:,3]: # for PCD file
rgb_list = float_to_rgb(point)
if using_hsv:
point_colors_list.append(rgb_to_hsv(rgb_list) * 255)
else:
point_colors_list.append(rgb_list)
# Populate lists with color values
channel_1_vals = []
channel_2_vals = []
channel_3_vals = []
for color in point_colors_list:
channel_1_vals.append(color[0])
channel_2_vals.append(color[1])
channel_3_vals.append(color[2])
# Compute histograms
nbins=32
bins_range=(0, 256)
# Compute the histogram of the channels separately
channel_1_hist = np.histogram(channel_1_vals, bins=nbins, range=bins_range)
channel_2_hist = np.histogram(channel_2_vals, bins=nbins, range=bins_range)
channel_3_hist = np.histogram(channel_3_vals, bins=nbins, range=bins_range)
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((channel_1_hist[0], channel_2_hist[0], channel_1_hist[0])).astype(np.float64)
# Normalize the result
normed_features = hist_features / np.sum(hist_features)
# Generate random features for demo mode.
# Replace normed_features with your feature vector
#normed_features = np.random.random(96)
# Return the feature vector
return normed_features예측
https://github.com/camisatx/RoboticsND/blob/master/projects/perception/README.md#object-recognition
https://github.com/georgeerol/RoboticPerception#object-recognition
https://hortovanyi.wordpress.com/2017/11/19/3d-perception-project/
https://github.com/dexter800/RoboND-Perception-Project
https://github.com/dexter800/RoboND-Perception-Project/blob/master/project.py.py
Last updated
Was this helpful?