SVM-RGBD-PCL-Python (70%)
PCL-Python์ ์ด์ฉํ ๋ถ๋ฅ
Jupyter ๋ฒ์ ผ์ [์ด๊ณณ], [์ด๊ณณ-Pileline]์์ ํ์ธ ๊ฐ๋ฅ ํฉ๋๋ค.
์์ธก์ ์ฌ์ฉ๋ pcd์ํ์ [์ด๊ณณ]์
table_scene_inliers_0.pcd
~table_scene_inliers_6.pcd
๋ฅผ ์ฌ์ฉ ํ์์ต๋๋ค.
#!/usr/bin/env python
import pickle
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.preprocessing import LabelEncoder, StandardScaler
import matplotlib.colors
def rgb_to_hsv(rgb_list):
rgb_normalized = [1.0*rgb_list[0]/255, 1.0*rgb_list[1]/255, 1.0*rgb_list[2]/255]
hsv_normalized = matplotlib.colors.rgb_to_hsv([[rgb_normalized]])[0][0]
return hsv_normalized
def compute_color_histograms_PCD(cloud, using_hsv=False):
# Compute histograms for the clusters
point_colors_list = []
"""
# Step through each point in the point cloud for ROS msg
for point in pc2.read_points(cloud, skip_nans=True):
rgb_list = float_to_rgb(point[3])
if using_hsv:
point_colors_list.append(rgb_to_hsv(rgb_list) * 255)
else:
point_colors_list.append(rgb_list)
"""
# Step through each point in the point cloud for PCD
for point in cloud[:,3]: # for PCD file
rgb_list = float_to_rgb(point)
if using_hsv:
point_colors_list.append(rgb_to_hsv(rgb_list) * 255)
else:
point_colors_list.append(rgb_list)
# Populate lists with color values
channel_1_vals = []
channel_2_vals = []
channel_3_vals = []
for color in point_colors_list:
channel_1_vals.append(color[0])
channel_2_vals.append(color[1])
channel_3_vals.append(color[2])
# Compute histograms
nbins=32
bins_range=(0, 256)
# Compute the histogram of the channels separately
channel_1_hist = np.histogram(channel_1_vals, bins=nbins, range=bins_range)
channel_2_hist = np.histogram(channel_2_vals, bins=nbins, range=bins_range)
channel_3_hist = np.histogram(channel_3_vals, bins=nbins, range=bins_range)
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((channel_1_hist[0], channel_2_hist[0], channel_1_hist[0])).astype(np.float64)
# Normalize the result
normed_features = hist_features / np.sum(hist_features)
# Generate random features for demo mode.
# Replace normed_features with your feature vector
#normed_features = np.random.random(96)
# Return the feature vector
return normed_features
def get_normals(cloud_path):
"""
The actual *compute* call from the NormalEstimation class does nothing internally but:
for each point p in cloud P
1. get the nearest neighbors of p
2. compute the surface normal n of p
3. check if n is consistently oriented towards the viewpoint and flip otherwise
# normals: pcl._pcl.PointCloud_Normal,size: 26475
# cloud: pcl._pcl.PointCloud
"""
cloud = pcl.load(cloud_path)
feature = cloud.make_NormalEstimation()
#feature.set_RadiusSearch(0.1) #Use all neighbors in a sphere of radius 3cm
feature.set_KSearch(3)
normals = feature.compute()
return normals
def compute_normal_histograms(normal_cloud, nbins=32, nrange=(-1,1)):
'''
Computes and bins the point-cloud data using the objects distribution of surface normals.
:param: normal_cloud, point cloud containing the filtered clusters.
:param: nbins,number of bins that data will be pooled into.
:param: nrange, value range of the data to be pooled.
:return: the normalised histogram of surface normals
'''
norm_x_vals = []
norm_y_vals = []
norm_z_vals = []
for I in range(0,normal_cloud.size):
norm_x_vals.append(normal_cloud[I][0])
norm_y_vals.append(normal_cloud[I][1])
norm_z_vals.append(normal_cloud[I][2])
# Compute histograms of normal values (just like with color)
norm_x_hist = np.histogram(norm_x_vals, bins=nbins, range=nrange)
norm_y_hist = np.histogram(norm_y_vals, bins=nbins, range=nrange)
norm_z_hist = np.histogram(norm_z_vals, bins=nbins, range=nrange)
# Concatenate and normalize the histograms
hist_features = np.concatenate((norm_x_hist[0], norm_y_hist[0], norm_z_hist[0])).astype(np.float64)
normed_features = hist_features / np.sum(hist_features)
return normed_features
์์ธก
cloud = pcl.load_XYZRGB("tabletop.pcd")
sample_cloud = cloud.to_array()
# Generate Color Histogram for the spawned model
# Enable using_hsv for better results
c_hists = compute_color_histograms_PCD(sample_cloud, using_hsv=True)
# Generate normals and notmal histograms for the spawned model
normals = get_normals("table_scene_inliers_0.pcd")
n_hists = compute_normal_histograms(normals)
# Generate feature by concatenate of color and normals.
feature = np.concatenate((c_hists, n_hists))
detected_objects = []
# Make the prediction, retrieve the label for the result
# and add it to detected_objects_labels list
################################
model = pickle.load(open('model.sav', 'rb'))
#https://raw.githubusercontent.com/mkhuthir/RoboND-Perception-Project/master/model.sav
clf = model['classifier']
encoder = LabelEncoder()
encoder.classes_ = model['classes']
scaler = model['scaler']
prediction = clf.predict(scaler.transform(feature.reshape(1,-1)))
label = encoder.inverse_transform(prediction)[0]
print("Predicted Result : ", label)
('Predicted Result : ', 'snacks')
https://github.com/camisatx/RoboticsND/blob/master/projects/perception/README.md#object-recognition
https://github.com/georgeerol/RoboticPerception#object-recognition
https://hortovanyi.wordpress.com/2017/11/19/3d-perception-project/
https://github.com/dexter800/RoboND-Perception-Project
https://github.com/dexter800/RoboND-Perception-Project/blob/master/project.py.py
Last updated