Normal-PCL-Python (80%)

Jupyter ๋ฒ„์ ผ์€ [์ด๊ณณ]์—์„œ ํ™•์ธ ๊ฐ€๋Šฅ ํ•ฉ๋‹ˆ๋‹ค.

import pcl

def get_normals(cloud_path):
    """
    The actual *compute* call from the NormalEstimation class does nothing internally but:
    for each point p in cloud P
        1. get the nearest neighbors of p
        2. compute the surface normal n of p
        3. check if n is consistently oriented towards the viewpoint and flip otherwise

    # normals: pcl._pcl.PointCloud_Normal,size: 26475
    # cloud: pcl._pcl.PointCloud
    """
    cloud = pcl.load(cloud_path)

    feature = cloud.make_NormalEstimation()
    #feature.set_RadiusSearch(0.1) #Use all neighbors in a sphere of radius 3cm

    feature.set_KSearch(3)
    normals = feature.compute()

    return normals

Last updated

Was this helpful?