Search-Octree-PCL-Cpp (70%)
PCL-CPP ๊ธฐ๋ฐ Octree ํ์
์ฝ๋๋ [์ด๊ณณ]์์ ๋ค์ด๋ก๋ ๊ฐ๋ฅํฉ๋๋ค. ์ํํ์ผ์ [cloud_cluster_0.pcd]์ ์ฌ์ฉํ์์ต๋๋ค.
#include <pcl/io/pcd_io.h>
#include <pcl/octree/octree_search.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/point_types.h>
#include <iostream>
#include <vector>
//Spatial Partitioning and Search Operations with Octrees
//http://pointclouds.org/documentation/tutorials/octree.php#octree-search
//Commnets : Hunjung, Lim (hunjung.lim@hotmail.com)
int main()
{
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGB>);
// *.PCD ํ์ผ ์ฝ๊ธฐ (https://raw.githubusercontent.com/adioshun/gitBook_Tutorial_PCL/master/Intermediate/sample/cloud_cluster_0.pcd)
pcl::io::loadPCDFile<pcl::PointXYZRGB>("cloud_cluster_0.pcd", *cloud);
// ์๊ฐ์ ํ์ธ์ ์ํด ์์ ํต์ผ (255,255,255)
for (size_t i = 0; i < cloud->points.size(); ++i){
cloud->points[i].r = 255;
cloud->points[i].g = 255;
cloud->points[i].b = 255;
}
//Octree ์ค๋ธ์ ํธ ์์ฑ
float resolution = 0.03f; //๋ณต์
ํฌ๊ธฐ ์ค์ (Set octree voxel resolution)
pcl::octree::OctreePointCloudSearch<pcl::PointXYZRGB> octree(resolution);
octree.setInputCloud(cloud); // ์
๋ ฅ
octree.addPointsFromInputCloud(); //Octree ์์ฑ (Build Octree)
//๊ธฐ์ค์ (searchPoint) ์ค์ ๋ฐฉ๋ฒ #1(x,y,z ์ขํ ์ง์ )
//pcl::PointXYZRGB searchPoint;
//searchPoint.x = 0.026256f;
//searchPoint.y = -1.464739f;
//searchPoint.z = 0.929567f;
//๊ธฐ์ค์ (searchPoint) ์ค์ ๋ฐฉ๋ฒ #2(3000๋ฒ์งธ ํฌ์ธํธ)
pcl::PointXYZRGB searchPoint = cloud->points[3000];
//๊ธฐ์ค์ ์ขํ ์ถ๋ ฅ
std::cout << "searchPoint :" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z << std::endl;
//๊ธฐ์ค์ ๊ณผ ๋์ผํ ๋ณต์
๋ด ์กด์ฌ ํ๋ ํ๋ ํฌ์ธํธ ํ์(Voxel Neighbor Search)
std::vector<int> pointIdxVec; //๊ฒฐ๊ณผ๋ฌผ ํฌ์ธํธ์ Index ์ ์ฅ(Save the result vector of the voxel neighbor search)
if (octree.voxelSearch(searchPoint, pointIdxVec))
{
//์๊ฐ์ ํ์ธ์ ์ํ์ฌ ์์ ๋ณ๊ฒฝ (255,0,0)
for (size_t i = 0; i < pointIdxVec.size(); ++i){
cloud->points[pointIdxVec[i]].r = 255;
cloud->points[pointIdxVec[i]].g = 0;
cloud->points[pointIdxVec[i]].b = 0;
}
}
// ๊ธฐ์ค์ ์์ ๊ฐ๊น์ด ์์์ค K๋ฒ์งธ๊น์ง์ ํฌ์ธํธ ํ์ (K nearest neighbor search)
int K = 50; // ํ์ํ ํฌ์ธํธ ์ ์ค์
std::vector<int> pointIdxNKNSearch; //Save the index result of the K nearest neighbor
std::vector<float> pointNKNSquaredDistance; //Save the index result of the K nearest neighbor
if (octree.nearestKSearch(searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0)
{
//์๊ฐ์ ํ์ธ์ ์ํ์ฌ ์์ ๋ณ๊ฒฝ (0,255,0)
for (size_t i = 0; i < pointIdxNKNSearch.size(); ++i){
cloud->points[pointIdxNKNSearch[i]].r = 0;
cloud->points[pointIdxNKNSearch[i]].g = 255;
cloud->points[pointIdxNKNSearch[i]].b = 0;
}
}
// ํ์๋ ์ ์ ์ ์ถ๋ ฅ
std::cout << "K = 50 nearest neighbors:" << pointIdxNKNSearch.size() << endl;
//๊ธฐ์ค์ ์์ ์ง์ ๋ ๋ฐ๊ฒฝ๋ด ํฌ์ธํธ ํ์ (Neighbor search within radius)
float radius = 0.02; //ํ์ํ ๋ฐ๊ฒฝ ์ค์ (Set the search radius)
std::vector<int> pointIdxRadiusSearch; //Save the index of each neighbor
std::vector<float> pointRadiusSquaredDistance; //Save the square of the Euclidean distance between each neighbor and the search point
if (octree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0)
{
//์๊ฐ์ ํ์ธ์ ์ํ์ฌ ์์ ๋ณ๊ฒฝ (0,0,255)
for (size_t i = 0; i < pointIdxRadiusSearch.size(); ++i){
cloud->points[pointIdxRadiusSearch[i]].r = 0;
cloud->points[pointIdxRadiusSearch[i]].g = 0;
cloud->points[pointIdxRadiusSearch[i]].b = 255;
}
}
// ํ์๋ ์ ์ ์ ์ถ๋ ฅ
std::cout << "Radius 0.02 nearest neighbors: " << pointIdxRadiusSearch.size() << endl;
// ์์ฑ๋ ํฌ์ธํธํด๋ผ์ฐ๋ ์ ์ฅ
pcl::io::savePCDFile<pcl::PointXYZRGB>("Octree_AllinOne.pcd", *cloud);
}๊ฒฐ๊ณผ


์ฐธ๊ณ ์์น
๊ฒฐ๊ณผ
๊ฐ ๊ธฐ๋ฅ๋ณ ์ฝ๋ 3๊ฐ
1. Neighbors within voxel search
์ฝ๋๋ [์ด๊ณณ]์์ ๋ค์ด๋ก๋ ๊ฐ๋ฅํฉ๋๋ค. ์ํํ์ผ์ [cloud_cluster_0.pcd]์ ์ฌ์ฉํ์์ต๋๋ค.
๊ฒฐ๊ณผ
2. K nearest neighbor search
์ฝ๋๋ [์ด๊ณณ]์์ ๋ค์ด๋ก๋ ๊ฐ๋ฅํฉ๋๋ค. ์ํํ์ผ์ [cloud_cluster_0.pcd]์ ์ฌ์ฉํ์์ต๋๋ค.
๊ฒฐ๊ณผ
3. Neighbors within radius search
์ฝ๋๋ [์ด๊ณณ]์์ ๋ค์ด๋ก๋ ๊ฐ๋ฅํฉ๋๋ค. ์ํํ์ผ์ [cloud_cluster_0.pcd]์ ์ฌ์ฉํ์์ต๋๋ค.
๊ฒฐ๊ณผ
Last updated
Was this helpful?