💻
Tutorial
  • INTRO
  • Part 0 (개요)
    • README
    • 3D 영상처리
    • [별첨] PCL & PCD란 (100%)
    • chapter02 : PCL 설치 (100%)
    • chapter03 : ROS 실습 준비(100%)
  • Part 1 (초급)
    • README
    • PCL 기반 로봇 비젼
    • [별첨] 파일 생성 및 입출력 (70%)
      • PCL-Cpp (70%)
      • PCL-Python (70%)
      • Open3D-Python (70%)
      • ROS 실습 (90%)
    • Filter
    • [별첨] 샘플링 (70%)
      • 다운샘플링-PCL-Cpp (70%)
      • 다운샘플링-PCL-Python (50%)
      • 업샘플링-PCL-Cpp (70%)
      • ROS 실습 (90%)
    • [별첨] 관심 영역 설정 (70%)
      • PCL-Cpp (70%)
      • PCL-Python (70%)
      • ROS 실습 (90%)
    • [별첨] 노이즈 제거 (70%)
      • PCL-Cpp (70%)
      • PCL-Python (50%)
      • ROS 실습 (90%)
  • Part 2 (중급)
    • README
    • Kd-Tree/Octree Search
    • Chapter03 : Sample Consensus
    • [별첨] 바닥제거 (RANSAC) (70%)
      • PCL-Cpp (70%)
      • PCL-Python (70%)
      • ROS 실습 (90%)
    • 군집화 (70%)
      • Euclidean-PCL-Cpp (70%)
      • Euclidean-PCL-Python (0%)
      • Conditional-Euclidean-PCL-Cpp (50%)
      • DBSCAN-PCL-Python (0%)
      • Region-Growing-PCL-Cpp (50%)
      • Region-Growing-RGB-PCL-Cpp (50%)
      • Min-Cut-PCL-Cpp (50%)
      • Model-Outlier-Removal-PCL-Cpp (50%)
      • Progressive-Morphological-Filter-PCL-Cpp (50%)
    • 포인트 탐색과 배경제거 (60%)
      • Search-Octree-PCL-Cpp (70%)
      • Search-Octree-PCL-Python (70%)
      • Search-Kdtree-PCL-Cpp (70%)
      • Search-Kdtree-PCL-Python (70%)
      • Compression-PCL-Cpp (70%)
      • DetectChanges-PCL-Cpp (50%)
      • DetectChanges-PCL-Python (50%)
    • 특징 찾기 (50%)
      • PFH-PCL-Cpp
      • FPFH-PCL-Cpp
      • Normal-PCL-Cpp (70%)
      • Normal-PCL-Python (80%)
      • Tmp
    • 분류/인식 (30%)
      • 인식-GeometricConsistencyGrouping
      • SVM-RGBD-PCL-Python (70%)
      • SVM-LIDAR-PCL-Python (0%)
      • SVM-ROS (0%)
    • 정합 (70%)
      • ICP-PCL-Cpp (70%)
      • ICP-ROS 실습 (10%)
    • 재구성 (30%)
      • Smoothig-PCL-Cpp (70%)
      • Smoothig-PCL-Python (70%)
      • Triangulation-PCL-Cpp (70%)
  • Part 3 (고급)
    • README
    • 딥러닝 기반 학습 데이터 생성 (0%)
      • PointGAN (90%)
      • AutoEncoder (0%)
    • 딥러닝 기반 샘플링 기법 (0%)
      • DenseLidarNet (50%)
      • Point Cloud Upsampling Network
      • Pseudo-LiDAR
    • 딥러닝 기반 자율주행 탐지 기술 (0%)
    • 딥러닝 기반 자율주행 분류 기술 (0%)
      • Multi3D
      • PointNet
      • VoxelNet (50%)
      • YOLO3D
      • SqueezeSeg
      • butNet
  • Snippets
    • PCL-Snippets
    • PCL-Python-Helper (10%)
    • Lidar Data Augmentation
  • Appendix
    • 시각화Code
    • 시각화툴
    • Annotation툴
    • Point Cloud Libraries (0%)
    • 데이터셋
    • Cling_PCL
    • 참고 자료
    • 작성 계획_Tips
    • 용어집
Powered by GitBook
On this page

Was this helpful?

  1. Part 1 (초급)
  2. [별첨] 샘플링 (70%)

업샘플링-PCL-Cpp (70%)

Previous다운샘플링-PCL-Python (50%)NextROS 실습 (90%)

Last updated 5 years ago

Was this helpful?

코드는 에서 다운로드 가능합니다. 샘플파일은 을 사용하였습니다.

#include <pcl/io/pcd_io.h>
#include <pcl/surface/mls.h>

int
main(int argc, char** argv)
{
    // Objects for storing the point clouds.
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud(new pcl::PointCloud<pcl::PointXYZ>);

    // Read a PCD file from disk.
    pcl::io::loadPCDFile<pcl::PointXYZ>("table_scene_lms400_downsampled.pcd", *cloud);
    std::cout << "Loaded " << cloud->width * cloud->height << std::endl;

    // Filtering object.
    pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointXYZ> filter;
    filter.setInputCloud(cloud);
    // Object for searching.
    pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree;
    filter.setSearchMethod(kdtree);
    // Use all neighbors in a radius of 3cm.
    filter.setSearchRadius(0.03);
    // Upsampling method. Other possibilites are DISTINCT_CLOUD, RANDOM_UNIFORM_DENSITY
    // and VOXEL_GRID_DILATION. NONE disables upsampling. Check the API for details.
    filter.setUpsamplingMethod(pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointXYZ>::SAMPLE_LOCAL_PLANE);
    // Radius around each point, where the local plane will be sampled.
    filter.setUpsamplingRadius(0.03);
    // Sampling step size. Bigger values will yield less (if any) new points.
    filter.setUpsamplingStepSize(0.02);

    filter.process(*filteredCloud);

    pcl::io::savePCDFile<pcl::PointXYZ>("table_scene_lms400_upsampled.pcd", *filteredCloud);
    std::cout << "Result " << filteredCloud->width * filteredCloud->height << std::endl;
}

실행 & 결과

$ Loaded 41049
$ Result 163028

시각화 & 결과

$ pcl_viewer table_scene_lms400_downsampled.pcd 
$ pcl_viewer table_scene_lms400_upsampled.pcd

원본

원본 확대

결과

결과 확대

[이곳]
[table_scene_lms400_downsampled.pcd]