PCL-Cpp (70%)
1. Statistical Outlier Removal
์ฝ๋๋ [์ด๊ณณ]์์ ๋ค์ด๋ก๋ ๊ฐ๋ฅํฉ๋๋ค. ์ํํ์ผ์ [table_scene_lms400.pcd]์ ์ฌ์ฉํ์์ต๋๋ค.
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/statistical_outlier_removal.h>
// Removing outliers using a StatisticalOutlierRemoval filter
// http://pointclouds.org/documentation/tutorials/statistical_outlier.php#statistical-outlier-removal
int
main (int argc, char** argv)
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
  // *.PCD ํ์ผ ์ฝ๊ธฐ (https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_lms400.pcd)
  pcl::PCDReader reader;
  reader.read<pcl::PointXYZ> ("table_scene_lms400.pcd", *cloud);
  // ํฌ์ธํธ์ ์ถ๋ ฅ
  std::cerr << "Cloud before filtering: " << std::endl;
  std::cerr << *cloud << std::endl;
  // ์ค๋ธ์ ํธ ์์ฑ 
  pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
  sor.setInputCloud (cloud);            //์
๋ ฅ 
  sor.setMeanK (50);                    //๋ถ์์ ๊ณ ๋ คํ ์ด์ ์  ์(50๊ฐ)
  sor.setStddevMulThresh (1.0);         //Outlier๋ก ์ฒ๋ฆฌํ  ๊ฑฐ๋ฆฌ ์ ๋ณด 
  sor.filter (*cloud_filtered);         // ํํฐ ์ ์ฉ 
  // ์์ฑ๋ ํฌ์ธํธํด๋ผ์ฐ๋ ์ ์ถ๋ ฅ 
  std::cerr << "Cloud after filtering: " << std::endl;
  std::cerr << *cloud_filtered << std::endl;
  // ์์ฑ๋ ํฌ์ธํธํด๋ผ์ฐ๋(inlier) ์ ์ฅ 
  pcl::PCDWriter writer;
  writer.write<pcl::PointXYZ> ("table_scene_lms400_inliers.pcd", *cloud_filtered, false);
  // ์์ฑ๋ ํฌ์ธํธํด๋ผ์ฐ๋(outlier) ์ ์ฅ 
  sor.setNegative (true);
  sor.filter (*cloud_filtered);
  writer.write<pcl::PointXYZ> ("table_scene_lms400_outliers.pcd", *cloud_filtered, false);
  return (0);
}์คํ & ๊ฒฐ๊ณผ
$ Loaded : 460400
$ Filtered : 451410์๊ฐํ & ๊ฒฐ๊ณผ
$ pcl_viewer table_scene_lms400.pcd 
$ pcl_viewer StatisticalOutlierRemoval.pcd 
$ pcl_viewer StatisticalOutlierRemoval_Neg.pcd


์๋ณธ
๊ฒฐ๊ณผ
๊ฒฐ๊ณผ(SetNegarive)


์๋ณธ(ํ๋)
๊ฒฐ๊ณผ(ํ๋)
2. Radius Outlier removal
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/radius_outlier_removal.h>
// Removing outliers using a Conditional or RadiusOutlier removal
// http://pointclouds.org/documentation/tutorials/remove_outliers.php#remove-outliers
int
 main (int argc, char** argv)
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
  // *.PCD ํ์ผ ์ฝ๊ธฐ (https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_lms400.pcd)
  pcl::io::loadPCDFile<pcl::PointXYZ> ("table_scene_lms400.pcd", *cloud);
  // ํฌ์ธํธ์ ์ถ๋ ฅ
  std::cout << "Loaded : " << cloud->width * cloud->height  << std::endl;
  // ์คํ์ ํธ ์์ฑ 
  pcl::RadiusOutlierRemoval<pcl::PointXYZ> outrem;
  outrem.setInputCloud(cloud);    //์
๋ ฅ 
  outrem.setRadiusSearch(0.01);    //ํ์ ๋ฒ์ 0.01
  outrem.setMinNeighborsInRadius (10); //์ต์ ๋ณด์  ํฌ์ธํธ ์ 10๊ฐ 
  outrem.filter (*cloud_filtered);  // ํํฐ ์ ์ฉ 
  // ํฌ์ธํธ์ ์ถ๋ ฅ
  std::cout << "Result :  " << cloud_filtered->width * cloud_filtered->height  << std::endl;
  // ์์ฑ๋ ํฌ์ธํธํด๋ผ์ฐ๋(inlier) ์ ์ฅ 
  pcl::PCDWriter writer;
  writer.write<pcl::PointXYZ> ("Radius_Outlier_Removal.pcd", *cloud_filtered, false);
  // ์์ฑ๋ ํฌ์ธํธํด๋ผ์ฐ๋(outlier) ์ ์ฅ 
  outrem.setNegative (true);
  outrem.filter (*cloud_filtered);
  writer.write<pcl::PointXYZ> ("Radius_Outlier_Removal_Neg.pcd", *cloud_filtered, false);
  return (0);
}์คํ & ๊ฒฐ๊ณผ
$ Loaded : 460400
$ Result : 455495์๊ฐํ & ๊ฒฐ๊ณผ
$ pcl_viewer table_scene_lms400.pcd 
$ pcl_viewer Radius_Outlier_Removal.pcd 
$ pcl_viewer Radius_Outlier_Removal_Neg.pcd


์๋ณธ
๊ฒฐ๊ณผ
๊ฒฐ๊ณผ(SetNegarive)
Removing outliers using a StatisticalOutlierRemoval filter
๋ด๋ถ ์ฝ๋ ์ค๋ช :PCL Series 6 - Statistical Filtering (outlier point culling)
Removing outliers using a Radius Outlier removal
๋ด๋ถ ์ฝ๋ : PCL Series 7 - Radius Filtering (outlier point culling)
Last updated
Was this helpful?